Local discontinuous Galerkin methods for the Cahn-Hilliard type equations
نویسندگان
چکیده
In this paper we develop local discontinuous Galerkin (LDG) methods for the fourth-order nonlinear Cahn-Hilliard equation and system. The energy stability of the LDG methods is proved for the general nonlinear case. Numerical examples for the Cahn-Hilliard equation and the Cahn-Hilliard system in one and two dimensions are presented and the numerical results illustrate the accuracy and capability of the methods. AMS subject classification: 65M60, 35K55
منابع مشابه
Application of the Local DiscontinuousGalerkinMethod for the Allen-Cahn/Cahn-Hilliard System
In this paper, we consider the application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system. The method in this paper extends the local discontinuous Galerkin method in [10] to the more general application system which is coupled with the Allen-Cahn and Cahn-Hilliard equations. Similar energy stability result as that in [10] is presented. Numerical results for ...
متن کاملA discontinuous Galerkin method for the Cahn-Hilliard equation
A discontinuous Galerkin finite element method has been developed to treat the high-order spatial derivatives appearing in the Cahn–Hilliard equation. The Cahn–Hilliard equation is a fourth-order nonlinear parabolic partial differential equation, originally proposed to model phase segregation of binary alloys. The developed discontinuous Galerkin approach avoids the need for mixed finite elemen...
متن کاملFully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition
Fully discrete discontinuous Galerkin methods with variable meshes in time are developed for the fourth order Cahn-Hilliard equation arising from phase transition in materials science. The methods are formulated and analyzed in both two and three dimensions, and are proved to give optimal order error bounds. This coupled with the flexibility of the methods demonstrates that the proposed discont...
متن کاملUnconditional Energy Stability Analysis of a Second Order Implicit-Explicit Local Discontinuous Galerkin Method for the Cahn-Hilliard Equation
Abstract In this article, we present a second-order in time implicit-explicit (IMEX) local discontinuous Galerkin (LDG) method for computing the Cahn-Hilliard equation, which describes the phase separation phenomenon. It is well-known that the Cahn-Hilliard equation has a nonlinear stability property, i.e., the free-energy functional decreases with respect to time. The discretized Cahn-Hilliard...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 227 شماره
صفحات -
تاریخ انتشار 2007